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Abstract. A simple recursion-method-based scheme within a tight-binding Hamiltonian 
formulation is presented. While the off-diagonal matrix elements are treated according to 
the Harrison parametrisation, the diagonal ones are improved so as to be consistent with the 
respective partial band occupations. Thus the relative positions of bands as well as the charge 
transfer can be easily determined. Moreover, orbital functions of the extended basis set can 
be conveniently incorporated. Our choice of selected random initial vector sets enables us 
to calculate thepartialdensitiesof states in avery fast way, keeping the occupation dispersions 
within 0.02 eV for each band. 

The procedure is applied to the calculation of the electronic structure of amorphous Fe 
and Fe,m-xB, ( x  = 14-25) alloy. The effect of 4p orbital inclusion on the d band density-of- 
states curves is examined. Comparison with an experiment as well as with other existing 
calculations is discussed. 

1. Introduction 

Considerable pidgress has been made in the last decade in the electronic structure 
calculations of amorphous solids. The progress in the development of atomic structure 
simulation methods, together with the advent of fast computers, made it possible to 
carry out large first-principles-like calculations of the electronic density of states (DOS) 
on realistic structural models of amorphous metals and their alloys (Fujiwara 1984). 
However, a complete computer simulation of a solid, a recent challenging perspective 
(Hafner and Jaswal 1988), requires such a calculation to be repeated many times. To 
achieve some progress in this field extremely fast, while sufficiently reliable, methods 
are necessary. 

One of the most intensively studied amorphous metallic systems are the amorphous 
Fe and Fe-B alloys. Successful computer-simulated structural models have been gen- 
erated (Boudreaux 1978, Fujiwara et al 1981, KrajCi and Mrafko 1988). The electronic 
structure has been calculated by several authors. Here the recursion method (Haydock 
et af 1972,1975) proved to be a commonly used scheme to handle the DOS calculations. 
When omitting model calculations on artificial structures the main differences between 
the various calculations are in the electronic Hamiltonian construction. Fujiwara (1982) 
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employed the LMTO-ASA method and the improved screened LMTO first-principles frame- 
work (1984) with self-consistently determined potential parameters. Bose et a1 (1983) 
elaborated the matrix elements using the atomic potentials corrected for non-additivity. 
Besides these sophisticated formulations good results can be obtained within much 
simpler parametrised approaches (Mathur 1983, Krey et a1 1987, KrajEi and Mrafko 
1988). Here the Harrison parametrisation (Harrison 1980) has appeared to be a fre- 
quently employed scheme for electronic Hamiltonian matrix elements determination. 
KrajCi (1987) performed a thorough investigation of various methodological aspects of 
calculations within such a simple Hamiltonian, and KrajEi and Mrafko (1988) applied 
the parametrisation to their structural models of Fe-B alloys. However, comparison 
with Fujiwara (1984) suggests that higher orbitals (at least Fe 4p) should be included 
into the basis set. Krey et a1 (1987) obtained the diagonal elements for such a case by 
fitting to existing band-structure calculations. 

We proceed in a different way. Obviously, the Hamiltonian elements are dependent 
on the occupation of respective atomic orbitals. The occupations, in turn, are determined 
by the electronic structure, which implicitly contains the Hamiltonian elements as input 
parameters. Our determination of diagonal elements of the Hamiltonian is based on a 
simple form of such a self-consistency requirement. The procedure is somewhat similar 
to that of Frota-PessBa (1983, 1985); however, no a priori charge-transfer information 
is required. 

In § 2 the philosophy of our scheme, as well as the computational aspects of the 
calculation, are described. The results of the calculations are presented in § 3. A brief 
description of the structural models used is included here. For comparison, the results 
of our calculations on FCC and BCC Fe are also shown. In 0 4 the method and comparison 
of our results with other calculations and an experiment are discussed, with emphasis to 
the influence of 4p orbitals. Finally, § 5 contains the conclusions. 

2. Method 

Though the performance of present fast computers makes it possible to diagonalise even 
the complete Hamiltonian matrix, the partial diagonalisation procedure of Haydock 
(the recursion method) (Haydock et a1 1972, 1975) still remains a sufficient tool for a 
wide class of electronic structure problems. This is surely also the case for our method, 
described below. 

The electronic Hamiltonian we use has a simple LCAO form 

where 1 a) = 1 a, i> (i, a stand for site and orbital index, respectively) are the atomic 
orbitals, which we assume for simplicity to be orthogonal. The matrix elements H$B are 
constructed as follows. The off-diagonal elements h;P are expressed through Slater- 
Koster parameters Vlcfm(r). We used parametrised values of Vlrtm(r) as tabulated by 
Harrison (1980), without any attempt to improve them. The diagonal elements E? we 
understand to be equal to the atomic orbital energies here. An initial electron con- 
figuration (usually that of a neutral atom) is chosen, from which the orbital energies 
follow and the Hamiltonian is constructed. Its diagonalisation and integration up to the 
Fermi energy results in new band occupations. Now taking them as the input electron 
configuration the procedure is repeated until self-consistency is achieved. Of course, 



Electronic structure of amorphous Fe and FeB alloys 7853 

off-diagonal elements should be treated in the same way. However, as their contribution 
to the change of the electronic structure is expected to be of less significance, their 
dependence on orbital occupation is neglected. To justify this simplification we refer 
to the standard perturbation theory argument (e.g. only diagonal elements of the 
perturbation contribute to the first-order corrections of eigenvalues). Thus our scheme 
does not require a lot of additional effort; the dependence of orbital energies on the 
electron configuration is treated by the algorithm of Herman and Skillman (1963) using 
the Slater exchange potential. Considering the conclusions of Callaway and Wang (1977) 
concerning the minor importance of correlation effects on a DOS curve for BCC Fe, we 
did not attempt to include any correlation-potential corrections. 

The scheme requires repeated partial DOS (PDOS) evaluations. The usual way of 
performing this within the recursion method is an averaging over sufficient number of 
local DOS of respective orbital type. We have adopted a different approach. It has already 
been realised (see for example KrajEi 1987) that choosing the initial vector i U,) of the 
recursion in the form 

i 

leads on average to the total DOS g(E)  as the off-diagonal contribution to the Green 
function vanishes when repeated sufficient number of times. (Here Nis the total number 
of orbitals and Ei are random numbers, 6; = 2 1.) By analogy, we employed the fact that, 
using 

where the sum runs only over the orbitals of desired type A, results by the same argument 
in a PDOS gA(E) of the respective orbital type. However, as was noticed by KrajEi (1987), 
the DOS variance is inversely proportional to the number of orbitals N included in the 
sum (2) as well as to the number of initial vectors Ni used. Thus for some gA(E) 
calculations a large N ,  should be used. To avoid this, at least partially, we introduce the 
following trick. Suppose we have found a single initial vector iuo) that generates the 
PDOS g,(E) exactly. (For the case of total DOS such a vector can easily be set down 
explicitly (KrajEi 1987).) In this case the first recursion coefficient a, should be exactly 
E*, where E* is an average over all the diagonal elements corresponding to the orbital 
type A, as can be immediately verified realising that a, is the first moment of the 
respective DOS. Our scheme of the choice of I u o )  is now the following. We generate an 
initial vector of the type (3) and evaluate the a,. This vector is retained as a good 1 u o )  
only when it approaches within a prescribed accuracy (we required 0.005 eV for the 
d band and 0.05 eV for other orbital types). In such a way sufficient numbers of good 
initial vectors can be generated easily. Though such an effort has no effect on improving 
the DOS variance, we have found a substantial improvement of integrated quantities 
dispersion.? We have found Ni = 5 initial vectors of this kind (we refer to them as 
selectedinitialvectors) to be sufficient to obtain the occupancy dispersion within0.02 eV. 
Consequently, this value was chosen to be also the required accuracy for terminating 
the iteration. In such a way the occupancies can be evaluated quickly, at the same time 
being sufficiently accurate. Moreover, one important point deserves mention. Having 

i Obviously, our trick improves in fact only the first moment of the DOS, while, contrary to what happens for 
integrated quantities, higher moments also contribute significontly to the DOS. 
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Table 1. Self-consistently determined diagonal elements of the Hamiltonian. All the values 
are in eV relative to the respective Fermi energy. ( U ,  the a-Fe system without 4p states.) 

System 3d 4s 4P 2s 2P 

- - a-Fe" -1.05 -1.75 - 
a-Fe -0.63 3.17 6.97 - - 
Fcc-Fe -0.65 3.20 7.05 - 

Bcc-Fe -0.64 2.96 6.76 - 
Fe*oB,o -0.63 2.90 6.63 -1.98 3.57 

- 

- 

Table 2. Calculated orbital occupations (per atom of the respective type) and the DOS at the 
Fermi energy (in eV-'/atom) for the Fe systems studied (a  see table 1 caption). 

System N,, "I, N4p N?, N,, 

- 2.669 a-Fe" 7.04 0.96 - - 
a-Fe 5.97 0.58 1.45 - - 2.228 
Fcc-Fe 5.95 0.59 1.46 - - 2.023 
Bcc-Fe 6.03 0.55 1.42 - - 4.011 
FesoB2" 6.05 0.54 1.44 0.81 2.07 1.898 

found a suitable set of initial vectors 1 u o ) ,  it may be used with the same effect throughout 
the whole procedure, as for our scheme the sum X&+fgf~lHf, remains unchanged by 
redefinition of the Hamiltonian. 

The DOS, together with the integrals over them, were evaluated by the quadrature 
method of Nex (Nex 1978). For a correct picture of the DOS curve the tridiagonalisation 
termination level L = 25-30, at least, would be required in our case. However, for 
integrated quantities we have found a considerably lower L to be sufficient. Thus, to 
speed up our procedure, the search for self-consistent matrix elements was carried out 
entirely with L = 8, taking L = 25 only for the final g(E)  evaluation. 

3. Results 

The structure models of amorphous Fe and Feloo-xB, for x = 14, 17, 20 and 25 were 
generated by the thermodynamic simulation procedure of KrajEi and Mrafko (1984, 
1986). The truncated Morse potential (Fujiwara et a1 1981) with parameters taken 
from KrajEi (1987) for a-Fe and KrajEi and Mrafko (1988) for Fe-B was used for the 
interatomic interactions description. In the process of model generation the following 
steps were simulated: gradual compression of initial random distribution of low-density 
gaseous state to a liquid of observed density; its relaxation and equilibration; and, finally, 
a quenching to the amorphous state. All the models consist of N ,  = 400 atoms enclosed 
in a cubic box with periodic boundary conditions, the final cube edges being determined 
by the mass densities according to table 3. 

The basis set consists of the 3d, 4s, 4p and 2s, 2p atomic orbitals for Fe and B sites 
respectively. The cut-off distance for the electronic interactions we take to be yo = 
3.4 X lo-'' m. The values of the Slater exchange parameter U given by the optimisation 
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Table3. DOS at the Fermi energy and the calculated linear coefficient of the electronic specific 
heat y for Fe,m-xB, systems. The mass density of structural models is also shown. 

’ Figure 1. The density of electronic states 
(full curve) and their respective com- 

\.- 

x p (g ~ m - ~ )  g(E,) eV-’/atom y (J K-’ kmol-’) 

0 7.86 2.228 
14 7.48 2.055 
17 7.45 1.946 
20 7.42 1.898 
25 7.37 1.711 

5.251 
4.843 
4.586 
4.473 
4.032 

of Schwarz (1972) were used. The same values aF, = 0.71151 and aB = 0.76531 were 
used throughout all the calculations. 

The diagonal matrix elements, as determined by our procedure, are summarised in 
table 1. These values are also used for the final DOS curves evaluations. As preliminary 
calculations for Fe-B alloys indicated only slight differences in diagonal values for 
different concentrations, the self-consistently determined values for x = 20 were also 
used for the other Fe-B curves. The Fermi energy was determined so as to correspond 
to the average number of electrons per atom of the system considering eight valence 
electrons of Fe and three electrons of B atom, respectively. 

In figure 1 the effect of inclusion of the 4p orbital into the basis set for the case of 
amorphous Fe is demonstrated. As this effect evidently could not be neglected, all our 
subsequent calculations were carried out with 4p orbitals included. The curves of total 
DOS, as well as their 3d components for FelOO-,B, (x = 0, 14,17,20,25), are presented 
in figure 2. For comparison, our procedure was also applied to FCC and BCC Fe clusters 
of similar size?. The final DOS curves and their two d components are shown in figure 3. 
All the DOS curves are normalised to the average number of orbitals per atom and are 
shifted so as to set the Fermi energy to the zero of the energy scale. 

t There is no need to use random initial vectors for the DOS evaluation in this case as (owing to the long-range- 
order preservation by the boundary conditions imposed) only four non-equivalent orbitals (4s, 4p and two 3d 
orbitals of symmetry eg, tag )  exist here. 
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Figure 2. The density of electronic states (full curve) and their d components (broken curve) 
for amorphous Fe,oo-xB, alloys. The curves for a-Fe ( x  = 0) are also shown. 

I 

Figure 3. The density of electronic states (full 
curve) and its symmetry-decomposed d pro- 
jections (e,dashed, t,, dotted) for (a) BCC, (b)Fcc 16 -8 0 8 

E l e v i  Fe 

The orbital occupancies and the DOS at the Fermi energy g(E,), as well as the 
calculated linear coefficients of electronic specific heat y for all the systems studied, are 
summarised in tables 2 and 3. Only the Feg0BZ0 alloy occupancies are presented in table 
2, as the differences for other boron concentrations we have found to be negligible. The 
charge transfer of -0.12 electrons per B or +0.03 electrons per Fe atom respectively 
was found for the Fe80B20 system. 

4. Discussion 

The first-principles-like methods, which treat the electronic structure fairly, are usually 
complex and highly computer-time consuming while still containing approximations 
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Figure 4. (a) Comparison of the results Of DOS calculations for the amorphous Fe, 4p orbitals 
not included. Present work (full curve); KrajEi and Mrafko (1988) non-self-consistent 
Harrison parametrisation (broken) and Fujiwara (1982) LMTO-ASA method (dotted). (b )  
Comparison of the results Of  DOS calculations for the amorphous Fe with 4p orbitals included. 
Present work (full curve); Fujiwara (1954) LDA-LMTO method (broken); and our calculation 
with Hamiltonian parameters of Krey et al(1987) (dotted). 

their effect cannot be ever foreseen. On the other hand, simple parametrised calculations 
usually pay little attention to any self-consistency in determining of the Hamiltonian. 
The calculations of Frota-PessGa (1983, 1985) are rare examples of a self-consistent 
improvement of parametrised calculations for amorphous alloys. In the quoted work 
the charge transfer between the alloy components is assumed to be known a priori and 
taken directly from band structure calculations. However, the charge transfer can be 
very sensitive to any change in the local environment. Moreover, fitting to a given charge 
transfer fails to work when more orbital types are explicitly included, and, of course, for 
a single-compound system. In this sense, our procedure is more independent of structural 
changes and requires no restrictions concerning the type and number of orbitals included 
in the basis set. 

Comparison of our results for the amorphous Fe with non-self-consistent calculations 
of KrajEi and Mrafko (1988) shows that their simple assumption Ed = E, differs only 
slightly from our self-consistently determined values without 4p orbitals (table 1). More 
generally, figure 4(a) indicates that the shape of the DOS curve, without taking the 4p 
orbitals into account, is not too sensitive to the way of determining of the Hamiltonian. 
In the result of Bose et a1 (1983) it is difficult to distinguish whether their indistinct d- 
band splitting is a consequence of the structure or of a finite value of broadening E used 
in their DOS evaluation. 

The situation appears to be quite different when the Fe 4p orbitals are included. In 
this case we have found a two-peak d-band for the amorphous Fe; the splitting vanishes 
with increasing concentration of boron, retaining only a hump on the high binding energy 
side of the d-band (figure 2). Fujiwara (1984) used the screened LMTO Hamiltonian 
with self-consistently determined potentials within the local density approximation and 
obtained a distinct two-peak d band for both amorphous Fe and FeBOBzo alloy (figures 
4(b) and 5). The splitting for a-Fe can be well compared with our result (figure 4(b)). 
However, it was neither retained in our DOS curve for the FegOBzo alloy nor was it found 
in other calculations (figure 5). Krey et a1 (1987) determined the diagonal elements of 
the Hamiltonian by fitting to the band-structure calculation, keeping the parametrised 
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i Figure 5. Comparison of the results of DOS cal- 
culations for the amorphous FesoBzo with the 
experiment. Present work (full curve); Fujiwara 
(1984) (broken); our calculationswithparameters 
of Krey et a1 (1987) (dotted), KrajEi and Mrafko 
(1988) (chained) (4p orbitals included in all cases 
except KrajEi and Mrafko); and UPS experiment 
of Paul and Neddermayer (1985) (double-dotted 
chain). The vertical scale for the experimental 
curve is arbitrary. 
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hopping values. As the quoted work reports only of the case of Fe-B alloy, we have also 
used their Hamiltonian parameters for DOS evaluation on our a-Fe model and also 
reproduced the calculations with their Hamiltonian parameters on our model of Fe80B20 
alloy (figures 4(b) and 5). The curve for FesoB2, is similar to our results; however, no d- 
band splitting was observed here for the amorphous Fe case. This supports the expla- 
nation of the amorphous Fe d-band splitting by the pd-hybridisation, since as for Krey's 
parameters, the 4p-energy level is too remote to significantly influence the d states. 

Ashas been repeatedlypointedout, caremust be takentomakeapropertermination. 
For this reason values of the termination level L up to L = 35 were checked in order to 
ensure that the controversial d-band splitting is not an artifact of the method. The 
characteristic d-band splitting for the amorphous Fe we found to occur from L = 25 
upwards, retaining its shape almost unchanged for larger values of L. On the other hand, 
no d-band splitting at all was found for the FesoB2, alloy up to L = 35. 

For comparison, our method was also applied to the FCC and BCC iron clusters. The 
position of two main peaks in the d band of BCC iron agrees well with the band structure 
calculations of Callaway and Wang (1977) or that of Moruzzi et af (1978). The missing 
fine structure is likely to be a consequence of the Gaussian quadrature. Our aim here, 
however, was not a refinement of band structure calculations; these calculations had, 
rather, an illustrative character. The comparison of the DOS curves (figure 3), as well as 
of the respective results from tables 1 and 2, with a-Fe results confirms the notion that 
the amorphous Fe is rather FCC- than Bcc-like. Unfortunately, the paper of Fujiwara 
(1984) lacks the Fcc-calculation to resolve the resemblance of his results. Finally, notice 
that the self-consistently determined energies, as well as the orbital occupancies, we 
found to be practically independent of the type of the structure (table 1). 

We have also performed preliminary calculations on the liquid-structure models; 
however, as these calculations did not bring any notable difference either in the DOS 
curves or in the Hamiltonian parameters we do not present them here. This supports 
the suggestion that the main discrepancies are caused rather by different Hamiltonian 
construction than by faint differences in structural models. As has been demonstrated 
by Krey et a1 (1987) for the amorphous Fe8,BZ0 the difference between two realistic 
models can be recognised only in the very fine detail of the DOS curve. 

The Fermi energy was found to lie in the high DOS region in the d band, as expected 
from high d contribution to the total DOS; the trend in its position relative to the maximum 
was found to be the same as in Fujiwara (1984). However, though the trend of decreasing 
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value of the DOS at the Fermi energy g(E,)  with increasing boron concentration is 
preserved (table 3, compare also with KrajCi and Mrafko 1988 and Krey et a1 1987), the 
absolute values are rather small to correspond to the linear coefficient of specific heat 
y measurements (Matsuura et a1 1981). We explain it rather by the non-electronic 
contributions to the specific heat than by not having taken into account the ferromagnetic 
state in the calculations. Mathur (1983) performed a spin-polarised electronic-structure 
calculation for the amorphous Fe, but the value of the DOS at the Fermi energy he 
obtained was also lower than expected from the experiment. 

The closest (though far from identical) experimental quantity to compare with the 
DOS curves is the energy distribution of photoemitted electrons (XPS, UPS). Ample 
experimental results exist for the Fe-B amorphous alloy (see Oelhafen 1982 and a more 
recent study of Paul and Neddermayer 1985). All the experimental curves are single 
peaked eventually, with some structure on the high binding energy side of the d-peak, 
but in no case was a distinct two-peak structure observed. Unfortunately, we are not 
aware of any electronic structure experiment on the pure amorphous Fe to compare 
with the calculations. Only thin films of monometallic materials can be prepared in 
amorphous form and extreme experimental conditions are required for their spectro- 
scopic investigation (Magnan et a1 1989). 

In fact, our procedure should properly take into account the local electronic struc- 
ture, which for the amorphous structure differs from site to site, requiring each diagonal 
element to be determined separately, from the respective local DOS. This would require 
the local DOS calculations to be repeated many times. (The quantity of calculations 
would increase typically by two orders of magnitude in such a case.) However, we do 
not expect any significant correction to the electronic structure from an improvement of 
this kind. 

Finally, we remark that for a reliable determination of quantities such as, e.g., the 
binding energy, our self-consistency condition may turn out to be rather too simple to 
give satisfactory results. More elaborate formulations of the electronic problem (see, 
e.g. the derivation of the electronic energy contributions by Sutton et a1 1988) should 
probably be used in this case. Moreover, such an effort obviously requires an adequate 
improvement in the off-diagonal elements evaluation, too. Anyhow, for the fixing of 
relative band positions in a band structure calculation we believe our scheme to be a 
reasonable approach. 

5. Conclusions 

We have developed an electronic-structure calculation scheme that is a compromise 
between the rather complex first-principles-like methods and simple parametrised cal- 
culations. The procedure does not require any additional information; its only additional 
parameter is the Slater exchange parameter a. The recursion method, together with the 
selected random initial vector choice, appears to be an effective tool to make our 
computational scheme sufficiently reliable and fast. 

The application of the procedure to calculations of the electronic structure of amor- 
phous Fe and FelOO-,B, ( x  = 14-25) shows that for more reliable results the inclusion of 
higher orbitals appears to be unavoidable. We have found a distinct d-band splitting 
for amorphous Fe, this effect completely missing when 4p orbitals are omitted. With 
increasing concentration of boron the splitting vanishes. Such a picture is in a good 
agreement with existing XPS/UPS data for Fe-B alloys; for pure a-Fe an experiment is 
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still lacking. To our knowledge first photoemission experiments on the amorphous Fe 
are in progress now (Hricovini 1989). The discrepancies between existing calculations 
we ascribe to different Hamiltonians rather than to differences in structural models. 
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